If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49k^2+42k=0
a = 49; b = 42; c = 0;
Δ = b2-4ac
Δ = 422-4·49·0
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-42}{2*49}=\frac{-84}{98} =-6/7 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+42}{2*49}=\frac{0}{98} =0 $
| 49k+42k=0 | | (x+3)^2=13 | | .–9x+1=–x+17 | | 2,500(1+0.06t)+1,000(1+0.04t)=3,553.62 | | x/26=25 | | -9(x+6)-x=12-2(9+3x) | | -3(n-6)=3(2n+6) | | 4(3-2x)=-10x+12(x+11) | | -7(7x-9)=11x-3(5x+9) | | -7(7x-9)=11x-3(5x+9 | | -4(2x-6)+6x=-3(x-7)-4 | | 2(x+4)+4x=44 | | 4+3(r-5)=-7(r+11)+6 | | 7p+7p=-11(9-7p)+4(p+8) | | |7x-2|=|7x+4| | | 12m+9m=-(8m+8)+10(5+5m) | | 5/d+4=2/d-2 | | 4(12+5n)=-4(5n-12) | | -7(x+7)+6(1+x)=x-7+2 | | 10+m/8=12 | | 10+m/8=11 | | 3p+3(11-12p)=-4(6-6p) | | 8=n/6+10 | | -8(k-6)=-8k-12(6+5k) | | 78=7m-6 | | -8(k—6)=-8k-12(6+5k) | | (2i)^(1/2i)=0 | | (2i)^(2i)=0 | | -4(-6n+1)=40+2n | | -7(n+6)=-30-4n | | -4n+n=-8(n+2)-(2-2n) | | (7-2i)^(9-6i)=0 |